Human-Computer Interaction Design
Project 1.A Time Keeping & Time Telling Systems
Tuesday August 31st 2010

Eli Blevis, Associate Professor of Informatics
Chit Meng Cheong, Associate Instructor
Yue Pan, Associate Instructor
Xiying Wang, Associate Instructor
Heather Wiltse, Associate Instructor

Project
Find or create your own images or illustrations which denote or picture time keeping and time telling systems. This is a design research project—we are not interested in your original concepts, but rather things you find by observation or secondary sources that are interesting and compelling. Choose three contrasting images or illustrations. At least one of your choices must be connected to digital technologies in some way.

Format:
Your project must be presented on three and only three landscape mode pages in pdf format. The first page should be a sketch, the second page should be your final research or concept, and the third page should be your primary and secondary attributions lists, as in the example/model solution that follows. Upload your work to oncourse, as instructed in class. Be certain to reference all of your sources accurately and completely.

DUE Wednesday September 9th no later than 11:59 PM
An initial first iteration of your project to be presented in your practice session as described in the syllabus.

DUE Tuesday September 14th no later than 4:00 PM
A FINAL form completed project.

The example on the page that follows gives an idea of what a design research project could look like for the purposes of this class assignment. The example is by no means the most ideal project—yours should not be longer, but it can be more compelling and interesting than the example.

Explain why your choices contrast and what’s interesting about them in some of the following terms: human conceptual models; operational models; product semantics; visual aesthetics; design; visceral, behavioral, and reflective processing levels of affective response; any aspect of human interactivity with digital and other technologies and materials.
old ancient new
Glycine Airman Special II No. 48 Automatic Winding Mechanical Watch (source: E. Blevis)
This is a reinterpretation of a 1960’s vintage watch intended for use by pilots traveling across time zones. The idea is to set the inner dial to GMT time and the outer dial to local time, enabling the wearer to change time zones using the outer bezel, without needing to adjust the minute or second hands. A slightly different version of this watch is available as an iPhone application: www.glycine-watch.ch (shown bottom center).

The “user’s” likely conceptual model is that the hour hand rotates once per day, imitating the movement of the sun, since 12 is placed at the top of the watch and 24 (or 0) is at the bottom. The operational model is that of an automatic winding mechanical watch—that is, a wound spring turns gears at a fixed rate of movement of the hands.

Su Sung Clock Tower, China, 1088 CE
(source: http://physics.nist.gov/time/early.html) This 30 foot tall ancient clock tower used water as an energy source to move an elaborate mechanism. The interface is the globe at the top and the manikins pictured in the lower left of the illustration. For a complete description, see: physics.nist.gov/time.

The clock is interesting for its large scale, immobility, and materiality—bronze, stone, water, and other materials.

Phosphor E Ink Digital Watch
(source: http://www.watchismo.com/phosphor‐dh01‐watch‐digital‐hour‐clock.aspx) @ 9.23.09
This digital watch uses a new material—an EPD or electronic paper display—for its interactivity. The use of this material allows the display to be curved. Also, because digital paper is bistable—that is, it preserves its state without power and power is only required to change the display—this watch uses very low energy. The display is also much more configurable than the other two examples and it is easy to imagine a myriad of other applications of this material, aside from time keeping and time telling, many of which are described on this particular EPD manufacturer’s site: www.eink.com.
Primary Attritions

Secondary Attritions
image: E. Blevis
image: Su Sung Clock Tower, China, 1088 CE (source: http://physics.nist.gov/GenInt/Time/early.html @ 8.31.09)
image: www.glycine-watch.ch
source: physics.nist.gov/time
source: www.eink.com