Designing for Sustainable Food Practices

DRAFT Template & Sparse Example

LASTNAME Firstname, Englishname
Interaction Design
The Hong Kong Polytechnic School of Design

Advisor:
Visiting Professor Eli Blevis
Predispositions are the things we believe to be true at the outset of a design process or explanation.

Research comes in three forms, namely (i) observations—or primary research, (ii) literature review—or secondary research, and (iii) collections—or knowledge about cultural forms.

Insights are the design issues that arise out of research.

Concepts and systems of concepts are the things, services, communications, or strategies that we envision in response to insights.

Prototypes come in three forms, namely (i) exploratory—or behavioral or low fidelity prototypes, (ii) appearance—or look and feel prototypes, and (iii) usability—or proof of concept or high fidelity prototypes.

Strategies come in three forms, namely (i) social value—or social desirability planning, (ii) technology—or technological feasibility planning, and (iii) enterprise—or economic viability planning.
Predisposition One

Time

In western society, most people don't have time to ensure their food is local and healthy.
Research Observation One
Farmer’s Market

The image is a photo-ethnographic recording of a market scene. The image uses selective focus to highlight the figures engaged in the transaction. The scene is one of cheerful engagement and speaks to a healthy relationship between people and locally produced food.
Research Literature Report One

Literature Summary

For the “Designing for Sustainable Food Practices,” there are several articles that may be referenced, including Choi & Blevis (2010; 2011), Blevis & Coleman Morse (2009), and Hirsch et al. (2010). As a matter of sustainability and more important than any of these is the diagram on this page taken from the Intergovernmental Panel on Climate Change (IPPC) Summary for Policy Makers (IPPC, 2007). This diagram shows the predicted effects of climate change on food supply as well as four other broad sustainability concerns—water, ecosystems, coasts, and health—at various degrees of global average temperature change. The diagram presents the imperative for undertaking design planning for sustainable food practices in a very compelling way. The use of the diagram here illustrates what is meant by the notion that design, while not strictly a science, can and should make use of scientific reporting.

Figure: Food & Key Sustainability Impacts. Source: IPCC (2007), used here under fair use guidelines of the IPCC, www.ipcc.ch @ 1.26.2012
Research Collections One
Several Preparations of a Single Healthy Tomato Recipe

Pictured is a collection of photographs of homegrown tomatoes prepared with goat cheese, homegrown basil, black pepper, and olive oil on different days during the Summer of 2011.
Insight One
Balancing Health & Convenience

This semantic differential shows a diagrammatic semantic differential—or 2 factor model—for the “Designing for Sustainable Food Practices” example. This diagrammatic form is a good way to articulate a design space, in this case mapping various meal contexts and food sources in a space defined by a typically convenient to typically inconvenient factor, compared to a typically healthy to typically unhealthy factor. Sometimes, the space that is empty in such a diagram denotes a design opportunity. In the specific case of this figure, the space of not convenient and not healthy is rather a circumstance to be rightfully avoided. The insight denoted by the figure is that typical fast food is not typically healthy, but is typically convenient, and that growing food yourself is typically healthy, but not typically convenient, in keeping in this case with the original predispositions. In this particular example, there is a certain amount of subjectivity—sometimes it is possible to be more rigorous than other times depending on the design domain and the quality of the design research conducted and available.
Concept System One
Healthy Food Concept System

This diagram shows the simplest possible sketch of a concept system. It is too simple. We will need to discuss this in class.
Prototype One
Healthy Food Advisor for the Healthy Food Concept System

For each concept in the system, you should provide a low, appearance, and high fidelity prototype if possible. The illustration to the left is from a low fidelity prototype from a study I (Eli) conducted years ago. The image is a place holder.

A low fidelity (or behavioral or exploratory) prototype for the healthy food advisor mobile application might involve an over-the-shoulder study. This would entail following a willing person around pretending to be the application, commenting on food choices the person makes as she or he makes them. One expects that such a prototype would reveal how annoying a healthy food advisor might become to many people and respond to such revelations with design changes. Observations conducted in the service of research to develop insights are distinct from observations conducted to experiment with behavioral proto-
types—this point seems obvious, but is often a point of confusion for students.

For an appearance prototype, we might produce relatively high production value visual representations of what the healthy food advisor application will actually look like. At the level of concept system, we might produce communications that enable people to understand the system and its components.

For a usability prototype, we may actually want to program enough of for example, the food tracker/calendar status program or other system elements to be able to conduct a task-directed usability study.
Strategic Plan One
Healthy Food Concept System

This diagram and the one on the next page show a sketch of a design plan for our theme of “Designing for Sustainable Food Practices.” The figure shows that such a plan is developed in terms of level of details, and may in fact be illustrated at the leaf levels. The social value plan includes scheduling of activities to promote health possibilities, study system effects, tweak the system, and advertise results, as examples. The technology plan includes scheduling of activities to create the information architecture, system elements development, beta testing, and roll out, as example activities. The enterprise plan includes scheduling of activities to create alliances with food providers, promote the system, and calculate chasm crossing—the point at which the enterprise becomes economically sustainable, as examples (see Moore, 1999). The figure also shows a second level development of a specific activity in the technology plan, expanded to show the detail of activities.
to create research studies, prototype studies, use case analyses, data sourcing, and object-oriented models, as examples. Finally, a plan for experience studies and paper prototype studies appears on the next page as yet a further, illustrated expansion of the second level technology plan.

Technology Strategic Design
Plan: Sustainable Food System
Collaborative Menu Planning
Research & Prototyping Plan

Y1.Q1
- experience studies
- paper prototype usability studies

Y1.Q2
- menu design sticker study for collaborative menu planning

Y1.Q3
- multi-touch gesture study for collaborative menu planning

Y1.Q4
- detailed paper prototype study for collaborative menu planning
LASTNAME Firstname, Englishname
Interaction Design
The Hong Kong Polytechnic School of Design

Advisor:
Visiting Professor Eli Blevis

Contact Information
your email